))

	    = not ((\ x . not (x x))(\ x . not (x x)))
	    = not (r r)

So if (r r) is true then it is false and vice versa.

An alternative formulation is: "if the barber of Seville is a man who shaves all men in Seville who don't shave themselves, and only those men, who shaves the barber?" This can be taken simply as a proof that no such barber can exist whereas seemingly obvious axioms of set theory suggest the existence of the paradoxical set R.

Zermelo Fränkel set theory is one "solution" to this paradox. Another, type theory, restricts sets to contain only elements of a single type, (e.g. integers or sets of integers) and no type is allowed to refer to itself so no set can contain itself.

A message from Russell induced Frege to put a note in his life's work, just before it went to press, to the effect that he now knew it was inconsistent but he hoped it would be useful anyway.

Last updated: 2000-11-01

Nearby terms:

set R becomes a function r which is the negation of its))))(\ x . not (x x)))

Try this search on Wikipedia, OneLook, Google


Loading